PERMANENT MAGNET OSCILLATORS WITH COMMERCIAL SERIAL DRIVERS SD-SERIES

FEATURES

- 2 GHz To 22 GHz
- Compensation for Temperature Drift
- Voltage Regulators for Improved Stability
- 16 Bit Tuning Resolution

DESCRIPTION

Micro Lambda MLPM and MLPW Series Permanent Magnet YIG Oscillators are available with integrated serial driver circuits. These drivers eliminate the need for customers to design or develop their own driver circuits and sophisticated test and alignment procedures. Integrating a driver at Micro Lambda's factory ensures peak performance. Alignment and compensation with the particular YIG oscillator can be maximized down to the component level.

All drivers in this series provide input voltage regulators and compensation circuits to improve frequency drift. All voltages required by the YIG oscillator, except the heater inputs are supplied by the voltage regulators.

COMMERCIAL SERIAL DRIVERS
DRIVER INPUT \& RESPONSE

2-22 GHz PMO's, SD \& SG SERIES
SPECIFICATION (0 to +65 deg. C)

Tuning Command

Tuning Resolution
Tuning Accuracy (excluding hysteresis)

Tuning Speed
(Note 1)

Main Driver Inputs

Supply Voltage \& Current
(Note 2)
Supply Voltage Pushing
Supply Voltage Ripple Ground
YIG Heater Voltage \& Current

Digital Interface

Start Word (all 0's) = Lowest Frequency Stop Word (all 1's) = Highest Frequency

16 BIT Positive Logic (Fmax-Fmin)/65,535 Bit Resolution
See Table (Page 3)

10 mS for 1 GHz step to within $\pm 10 \mathrm{MHz}$. (residual FM is $10 \mathrm{kHz} \mathrm{Pk}-\mathrm{Pk}$)
+12 V or $+15 \mathrm{~V} \pm .5 \mathrm{~V} @ 265 \mathrm{~mA}, \mathrm{Max}$.
-12 V or $-15 \mathrm{~V} \pm .5 \mathrm{~V} @ 165 \mathrm{~mA}$, Max.
$\pm 100 \mathrm{kHz}$, Max. @ $\pm .5 \mathrm{Vdc}$
10 mV Ripple Pk-Pk from 2 kHz to 3 MHz
Chassis Ground
$+24 \mathrm{Vdc} \pm 4 \mathrm{Vdc} @ 300 \mathrm{~mA}$ surge for 2 seconds, 25 mA steady state Polarity independent : $\pm 12 \mathrm{Vdc}$ or $\pm 15 \mathrm{Vdc}$ acceptable

The MLWI digital driver interface is a standard 3 -wire connection compatable with SPI/QSPI/MICROWIRE interfaces. The 3 -wire serial interface will operate in a 5 V or 3.3 V logic system. The chip-select input (CSELECTn) frames the serial data loading at the data input pin (DATA). Immediately following CSELECTn's high-to-low transition, the data is shifted synchronously and latched into the input register on the rising edge of the serial-clock input (CLOCK). After 16 data bits have been loaded into the serial input register, it transfers its contents to the DAC latch on CSELECTn's low-to-high transition (Figure 2). Note that if CSELECTn does not remain low during the entire 16 CLOCK cycles, data will be corrupted. In this case, reload the DAC latch with a new 16-bit word.

SD-SERIES - CONT.

Permanent Magnet Oscillators with Serial Drivers

Power-On Reset
The MLWI digital driver has a power-on reset circuit to set the DAC's output to OV(F-min) in unipolar mode when VDD is first applied. This ensures that unwanted DAC output voltages will not occur immediately following a system power-up, such as after power loss.

Figure 1. Timing Diagram
\square
Figure 2. 3-Wire Interface Timing Diagram
TIMING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN TYP MAX	UNITS
CLOCK Frequency	fCLK			10
CLOCK Pulse Width High	tCH		45	MHz
CLOCK Pulse Width Low	tCL		45	ns
CSn Low to CLOCK High Setup	tCSS0		45	ns
CSn High to CLOCK High Setup	tCSS1		30	ns
CLOCK High to CSn Low Hold	tCSH0		40	ns
CLOCK High to CSn High Hold	tCSH1		0	ns
DATA to CLOCK High Setup	tDS			ns
DATA to CLOCK High Hold	tDH		20	$\mu \mathrm{~m}$
VDD High to CSn Low (power-up delay)				

SD-SERIES — CONT.

FM Coil Driver (SG Option)

Voltage	$\pm 10 \mathrm{~V}$
Current	$\pm 100 \mathrm{~mA}$
Input Impedance	$1 \mathrm{k}-\mathrm{Ohms}$
Sensitivity (Note 3)	$\pm 2.5 \mathrm{MHz} / \mathrm{V}$
Frequency Deviation	$\pm 25 \mathrm{MHz}$

[^0]
PERFORMANCE SPECIFICATIONS
 Permanent Magnet YIG Oscillators with Positive Input Serial Drivers ($0^{\circ} \mathrm{C}$ to $\mathbf{+ 6 5 0} \mathbf{C}$)

Model Number	Frequency GHz	$\begin{aligned} & \text { Accuracy } \\ & \text { (MHz) }^{*} \end{aligned}$	$\begin{gathered} \hline \text { Current } \\ +12 \mathrm{~V} \\ (\mathrm{~mA}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Current } \\ -12 \mathrm{~V} \\ \text { (mA) } \\ \hline \end{gathered}$	Outline Drawing	Outline Drawing (SG Option)
Bi-Polar						
MLPM-0204SD	2-4	+/-10	265	165	61-105	61-105
MLPM-0305SD	3-5	+/-10	265	165	61-105	61-105
MLPM-0406SD	4-6	+/-10	265	165	61-105	61-105
MLPM-0507SD	5-7	+/-10	265	165	61-105	61-105
MLPM-0608SD	6-8	+/-10	265	165	61-105	61-105
MLPM-0709SD	7-9	+/-10	265	165	61-105	61-105
MLPM-0810SD	8-10	+/-10	265	165	61-105	61-105
MLPM-0911SD	9-11	+/-10	265	165	61-105	61-105
MLPM-1012SD	10-12	+/-10	265	165	61-105	61-105
MLPM-1113SD	11-13	+/-10	265	165	61-105	61-105
MLPM-1214SD	12-14	+/-10	265	165	61-105	61-105
Model	Frequency	Accuracy	Current	Current	Outline	Outline
Number	GHz	(MHz) *	$\begin{gathered} +15 \mathrm{~V} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{aligned} & -15 \mathrm{~V} \\ & (\mathrm{~mA}) \end{aligned}$	Drawing	Drawing (SG Option)
Ultra-Wide Tuning Range						
MLPW-0812SD	8-12	+/-15	315	215	61-106	61-106
MLPW-1014SD	10-14	+/-15	315	215	61-106	61-106
MLPW-1418SD	14-18	+/-15	315	215	61-106	61-106
MLPW-1822SD	18-22	+/-15	315	215	61-106	61-106

[^1]

[^0]: Note: 1.Optional 1 mS Tuning Speeds Available.
 2. Some YIG devices require higher voltages - Check with factory.
 3. FM Coil Sensitivity Adjustment Available. Sensitivity Stated is Average Over Frequency Range.

[^1]: * Accuracy includes frequency drift and linearity errors over the temperature range.

